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Anodic cyanation of C-4 hydroxylated piperidines:
total synthesis of (±)-alkaloid 241D

Nicolas Girard and Jean-Pierre Hurvois*

Laboratoire d’Electrochimie et Catalyse, UMR 6226, Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex, France
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Abstract—A stereospecific synthesis of dendrobates (±)-alkaloid 241D is described. Key steps in this approach involved the stepwise
electrochemical synthesis of C-4 substituted a-aminonitriles and their alkylation with iodomethane and 1-bromononane, respec-
tively. The N-aryl group was removed in the last step through a Birch dearomatization followed by the hydrolysis of the inter-
mediate dienamines.
� 2007 Elsevier Ltd. All rights reserved.
Alkaloid 241D (1) was isolated in minute quantities in
1988 by Edwards and Daly1 from the methanolic skin
extracts of the Panamanian poison frog Dendrobates
speciosus. The structure of 1 was determined by 1H
NMR spectroscopy and was cis,cis-4-hydroxy-2-
methyl-6-nonylpiperidine. This 2,6-dialkyl substitution
pattern is found in many animal alkaloids and represen-
tative members of this family are drawn in Figure 1.

For example, Solenopsin A (2)2 together with its cis iso-
mer isosolenopsin A (3), were isolated from the venom of
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Figure 1. 2,6-Dialkyl-piperidine alkaloids.
ants of the genus Solenopsis, whereas dihydropinidine
(4)3 was extracted as a minor constituent from the Mex-
ican bean beetle Epilachna varivestis. From a pharmaco-
logical standpoint, racemic alkaloid 241D proved to be a
noncompetitive blocker of acetylcholine to ganglionic
nicotinic receptor channels.4 These results were akin
to that observed with histrionicotoxin, the most widely
used blocker for nicotinic receptors. These interesting
biological properties coupled with the impossibility to
isolate more than milligram quantities from natural
sources, have incited chemists to elaborate new synthetic
schemes aimed at the synthesis of 1. The key step in these
methodologies generally involved intramolecular Man-
nich-type cyclizations,5 which led to the stereoselective
preparation of 1. In the continuation of our program
aimed at the electrochemical preparation of 2,6-dial-
kylpiperidines6 we became attracted to the synthesis of
1 as a means to develop new a-aminonitrile chemistry
that may be of more general utility. For this, we have ap-
plied a strategy delineated in Scheme 1, which is based on
the stepwise elaboration of piperidine 5. The requisite
alkyl chains should be introduced via the alkylation of
conveniently substituted a-aminonitriles, and we were
also curious to investigate what could be the influence
of the hydroxyl group (or its protected form) at C(4) con-
cerning the stereochemical outcome of our synthetic
plan. Thus, N-phenyl-piperidone 6 was selected as the
starting material as it is readily accessible from the bimo-
lecular Caubère condensation between bromobenzene
and commercially available 4-piperidone ethylene ketal.7

The results of our synthesis of (±)-alkaloid 241D are
reported in this Letter.
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Scheme 1. Retrosynthetic analysis of alkaloid (±)-241D.
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Acid-catalyzed deprotection of piperidone 6 followed by
the reduction of the intermediate aminoketone with an
excess of NaBH4 in EtOH at 20 �C provided the amino-
alcohol, which was protected as the THP derivative 7
(84% yield from 6).

With the required amine in hand, we decided first to
introduce the methyl group at C(2) employing the
a-aminonitrile chemistry. Thus, the electrolysis
(Ep = +0.90 V/SCE, NaCN, 2.3 F/mol) of a methanolic
solution of 7 was made in a divided cell equipped with a
glassy carbon electrode as anode and a carbon rod as
cathode.8 a-Aminonitrile 8 was obtained as a mixture
(4/1) of diastereoisomers9 which could be separated by
column chromatography. On the basis of previous
investigations one can assume that the major adduct
has a (2R*,4R*) relative configuration in which the cya-
nide group is axially oriented. Reaction of a-amino-
nitrile 8 (trans/cis mixture, 4:1) with 1.2 equiv of LDA
(prepared from diisopropylamine and n-BuLi) at
�60 �C, and of the resultant anion with iodomethane
at �20 �C, provided adduct 9 (72% yield).10 The latter
was reduced with NaBH4 in EtOH at 20 �C for 12 h,
to give the disubstituted piperidine 10 as a single diaste-
reomer (97% yield). At this stage, it was felt that 10 has a
(2R*,4R*) relative configuration. The high diastereo-
Scheme 2. Synthesis of amine rac-10. Reagents and conditions: (1) (i)
THF–HCl 1.5 N (10:1) 65 �C, 24 h; (ii) NaBH4 (4 equiv), EtOH, rt
12 h; (iii) DHP (7 equiv), PTSA (10 mol %), CH2Cl2, 40 �C, 12 h; (2)
�2e�, –H+, MeOH, NaCN (6 equiv), LiOAc (20 g/L); (3) LDA
(1.2 equiv) THF, CH3I (1.2 equiv), �78 �C to 5 �C, 12 h; (4) NaBH4

(4 equiv) EtOH, rt 12 h.
selectivity for the reduction of 9 can be understood by
the prior formation of an iminium intermediate which
is locked in a single conformation according to the pres-
ence of the O–THP group at C-4. Axial attack of the hy-
dride anion (under a stereoelectronic control)11 on this
conformer adequately accounts for the formation of 10
as the single product. For the synthesis of (±)-1, we were
faced with the stereo- and regioselective installation of
the nonyl chain at C-6. To this end, the formation of
the intermediate a-aminonitrile 11 seemed to us an obvi-
ous solution to this problem (see Scheme 2).

Indeed, several studies performed in our laboratory12

and in others13 have shown that 2-alkyl-piperidine deriv-
atives could be selectively oxidized at C(6) with a high
degree of regioselectivity. Accordingly, electrolysis of
10 was made under similar conditions than that for com-
pound 7 providing a-aminonitrile 11 (79% yield) as mix-
ture (9:1) of diastereomers, which could be easily
separated by column chromatography. The 1H NMR
spectrum of the major compound showed the methyl
group as a doublet (3J = 6.0 Hz) system centered at
d = 0.96 ppm. Likewise, a similar doublet system was
found at d = 1.06 ppm in the 1H NMR spectrum of
the minor diastereomer. Taken together, these observa-
tions indicate that oxidation occurred selectively at C(6).
The alkylation of 11 (cis/trans mixture = 1:9) with 1-
bromononane led to the formation of 12 in a moderate
Scheme 3. Completion of the synthesis of (±)-alkaloid 241D. Reagents
and conditions: (1) �2e�, –H+, MeOH, NaCN (7 equiv), LiOAc (20 g/
L); 2) LDA (1.2 equiv) THF, n-C9H19Br (1.2 equiv), �78 �C to 5 �C,
12 h; (3) NaBH4 (4 equiv) EtOH, rt 12 h; (4) (i) THF–H2SO4 1.5 N
(10:1) 65 �C, 6 h; (ii) Li (100 equiv), liq. NH3–THF–EtOH (20:10:6)
�45 �C, 2 h, H2SO4–H2O–EtOH (0.5:4.5:5), 60 �C, 1 h.



N. Girard, J.-P. Hurvois / Tetrahedron Letters 48 (2007) 4097–4099 4099
45% yield as a single stereoisomer (99% de). Several at-
tempts were made to improve the conversion yield, but
all of them remain unsuccessful. Although a single ad-
duct was detected by spectroscopic means (1H and 13C
NMR), it was not possible to univocally determine the
stereochemistry at this stage. However, one can assume
that the substituents were all in a cis configuration as
drawn in Scheme 3. Completion of the synthesis of
(±)-1 was made as follows. The acidic cleavage of the
tetrahydropyranyl ether resulted in the formation of 2-
methyl-6-nonyl-1-phenyl-piperidin-4-ol whose phenyl
ring was reduced with Li (100 equiv) in a mixture of
THF and liquid ammonia in the presence of EtOH as
proton donor (Scheme 3).14 After work-up, the interme-
diate crude dienamine mixture was immediately hydro-
lyzed in aqueous acidic ethanol to produce (±)-1 (73%
yield from 13) as a white solid which melted at 97 �C.
Spectral data of (±)-1 (1H, 13C NMR, and m/z) were
identical with those reported in the literature.5b

In summary, a stereoselective synthesis of (±)-alkaloid
241D has been developed. The alkylation–reduction
steps were performed stereoselectively to place the sub-
stituents in a cis relative configuration.
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